

Mintec Import API

Use this API to import third party/supplier data and cost models in Mintec systems

Contact Info: support@mintecglobal.com
Document Version: v1.2
All rights reserved

Introduction

The Mintec Import API is a RESTful API that provides programmatic access to allow clients to bring
their own/third-party data and cost models into Mintec Analytics for further analysis and
benchmarking

The API enables user imported series to be created, updated and deleted. Users can bring series one
by one or in bulk into Mintec Analytics. The data points for these series can be added and
updated using the API. These series can be used in the same way an imported series can today.

Cost Models can be created, updated and deleted. API enables user to bring cost models one by one
or in bulk. The model components can be added and updated allowing the model to evolve and
change over its life cycle. The API allows the model to be managed using familiar concepts such
as Raw Materials and Packaging sections and can use all the existing representations, such as simple
values, advanced options using series (mintec or imported) and formula definitions.

The REST API identifies customers using OAuth; all responses are in JSON the format.

Access

The API service endpoint will be https://public-api.mintecanalytics.com/Import

Swagger – Use below swagger end point to browse the API.

https://public-api.mintecanalytics.com/swagger/index.html

file:///C:/Users/christopher.tiangga/Downloads/support@mintecglobal.com
https://public-api.mintecanalytics.com/Import
https://public-api.mintecanalytics.com/swagger/index.html

Authentication and Authorisation

The API uses OAuth 2.0 with a key that is provisioned via the user profile in Mintec Analytics to obtain
a secure token and access is available over https only. The application must obtain a bearer token and
submit this with every request.

The following information is required to obtain a token as an example:

 Property Value Description

Authority https://identity.mintecanalytics.com/connect/token
Endpoint used to
authenticate the user
against the service.

client_id ebcc725e95d89b2bccf89b351471fb28
Available from Mintec
Analytics, user profile,
APIs Access

client_secret ee094a61-8111-4479-bb6f-af61ca27b7ce
Generated from Mintec
Analytics, user profile,
APIs Access

grant_type client_credentials

scope import_api
Scope must be set
correctly

If you have already generated a secret key for the Mintec’s Export API then you can utilise the same

API key with the appropriate scope.

Auth Flow

• An application makes a request to the POST connect/token endpoint based on the Authority

to exchange these credentials for a bearer token.

• When accessing the REST API, the application uses the bearer token to authenticate and is

authorised to make the request.

• All requests must be made over https, any requests made over plain http will fail.

Refer to API Definitions document for access token details. Use the scope – import_api.

file://///ukdfs.mintecglobal.com/User/Redirect/monali.papde/Desktop/Public%20API%20Definition_May2019.pdf

Methods

User series:

• Get list user series - GET/v1/import/series

• Get specific series - GET/v1/import/series/{code}

• Get specific series points - GET/v1/import/series/{code}/pointsrange

• Create new user series meta data - POST/v1/import/series

• Create new user series – POST/v1/import/series/{code}

• Create new user series points - POST/v1/import/series/{code}/points

• Update series – PUT/v1/import/series/{code}

• Update series points - PUT/v1/import/series/{code}/points

• Delete specific series - DELETE/v1/import/series/{code}

• Delete series points - DELETE/v1/import/series/{code}/points

Cost models:

• Get list of all available cost models GET/v1/import/costmodels

• Get specific cost model - GET/v1/import/costmodels/model/{code}

• Create new model - POST/v1/import/costmodels

• Create new model components - GET/v1/import/costmodels/{code}/components

• Update existing model – PUT/v1/import/costmodels/{code}

• Update cost model components - PUT/v1/import/costmodels/{code}/components

• Delete model – DELETE/v1/import/costmodels/{code}

• Delete model components- DELETE/v1/import/costmodels/{code}/components

• Rebalance the model to 100% - GET /v1/import/costmodels/model /{code}/rebalance

Additional methods:

• Get list of currencies – GET/v1/currencies

• Get list of units - GET/v1/units

• Get list of frequencies – GET/v1/frequencies

How to obtain an authentication token info and the import API

The post request to retrieve a token must set the Content-Type header to application/x-www-form-
urlencoded, matching the encoding of the body of the request accordingly.

Requests will be rejected when obtaining a token if the Content-Type header is not set correctly.
When using swagger or tools like postman, the content type is set automatically to match the
requested body encoding.

Hints

• {code} - Should be replaced with the code of the user series or cost model required

For example, to retrieve metadata and points for specific user series e.g. “mycoffeedata”, the
request url would be formed as below.

https://public-api.mintecanalytics.com/v1/Import/series/mycoffeedata

• To utilise Mintec supported currency, frequency and unit in the API, use the “Abbr”
abbreviation field is used for currency and unit representation and id or name for
frequency. See currencies, frequencies and units below for details.

• Pagination support - The response is paginated in v1, set to 1000 records/page.

Page can be indexed where the result has multiple pages, set {Pagination} to specific number
(0, 1, 2, …) to specify number of pages to show. If not supplied, then default to 0.

• You can supply the frequency as an enum or the string value. For example, 2 or “Daily”

• Use the appropriate Content-Type header

Mintec Platform Data Points Import Rules

Frequency rules to adhere to when uploading user data via import API -

Example: if the date range is 1-Nov-2018 to 1-Nov-2019 then the following apply

• Daily

• All dates except Saturday, Sunday
e.g. 5-Nov-2018 (Mon), 6-Nov-2018 (Tue), 7-Nov-2018 (Wed), 8-Nov-2018
(Thu), 9-Nov-2018 (Fri)

• Weekly
• All Wednesdays

 e.g. 7-Nov-2018 (Wed), 14-Nov-2018 (Wed), 21-Nov-2018 (Wed), 28-Nov-
2018 (Wed)

• Monthly
• All 1st of month

 e.g. 1-Nov-2018, 1-Dec-2018, 1-Jan-2019
• Quarterly

• All 1st of Jan/ Apr/ Jul/ Oct
 e.g. 1-Jan-2019, 1-Apr-2019, 1-Jul-2019, 1-Oct-2019

• Annually
• All 1st of Jan
 e.g. 1-Jan-2019

Import API Example Scenarios

The import API enables you to manage the life cycle of two important entities in Mintec Analytics.

• User Imported Series

https://public-api.mintecanalytics.com/v1/Import

• Cost Models

User Imported Series Walk Through

User Imported Series are series that represent prices from your own or third-party data
sources, that you own or have the right to use. This data could come from many different
sources, this could be a file, bespoke system, enterprise system or a third-party data provider. If
you can read the data, then you can create a solution that uses the Import API to create and
add points data to your own series. Series can be manually imported today, if you are familiar
with the process, then you already know that the series can be used just like any other series in
the Mintec Platform.

Here is an example of what a user imported series life cycle might look like.

You need to have decided on a few key points, what are the key attributes?
The code for the series, the name, specification, these will help users identify what the series
represents and how-to identity it. This is what we often refer to as metadata, information about
the data.

The other key decisions are what unit, currency, frequency to use, this will be driven by the
data that you are importing. Having identified this information to best represent the series you
can retrieve the data from the source and call the API having built the payload accordingly.

The series must exist before you can add or update points, so the first step is to create it
initially. For this example, we will create the metadata and points data in the first request. Use
POST providing the following JSON payload in the body of the message. Posting to the
import/series will add the new series, using the code you provided.

Example Payload in the body of the message:

[
{

"code": "MMM01",
 "name": "My Monthly example import series",
 "specification": "MMM Special Series | Monthly Data",
 "currency": "Eur",
 "unit": "kg",
 "frequency": "4",
 "points": [
 {
 "value": "12",
 "date": "2019/01/01"
 },
 {
 "value": "78",
 "date": "2019/02/01"
 } ,
 {
 "value": "45",

 "date": "2019/03/01"
 },
 {
 "value": "68",
 "date": "2019/04/01"
 },
 {
 "value": "99",
 "date": "2019/05/01"
 },
 {
 "value": "41",
 "date": "2019/06/01"
 },
 {
 "value": "4",
 "date": "2019/07/01"
 },
 {
 "value": "66",
 "date": "2019/08/01"
 }

]
 }
]

You can post one or more series to the /series collection to create them.

The body of the message is JSON, so the Content-Type request header should be set to
application/json to indicate this.

If the request is successful, since you are creating a new resource the result will be 201 Created,
the response body will also contain this information and confirmation of the outcome:

{
 "code": 201,
 "message": {
 "success": 1,
 "failure": 0,
 "total": 1,
 "details": [
 {
 "code": "MMM01",
 "statusInfo": [
 {
 "code": 12,
 "message": "OK",
 "path": null
 }

]
 }
]
 },
 "data": null,
 "links": []
}

The result format is used across the API when creating or updating multiple resources, there is
a top-level code to indicate success or partial success and a count of the success/failure/total
operations. Following this is a details array which a summary of the update for each entity
provided. The code of the resource that was being managed and the statusInfo array containing
details of the outcome. The error code provides a result based on validation rules along with
the message, which is a textual representation of the issue or successful result (ok).

From the result above, the series was created successfully, as I provided only one in the
request, the result indicates the same, success is 1 out of total 1.

The resource is created I can update the metadata name, description and even change the code
if required. The typical life cycle for a series is to add new or updated points.

Here is an example, since my series is defined as having a Monthly Frequency you need to
provide the data points representing a month, Mintec defines monthly series as having a point
on the 1st of the month (see Mintec Platform Data Points Import Rules). As the series exists
you need to specify the code and the points resource; /v1/import/series/MMM01/points

POST the data in the body of the request containing the points you would like to add.
[
 {
 "value": "10",
 "date": "2019/09/01"
 },
 {
 "value": "10",
 "date": "2019/10/01"
 } ,
 {
 "value": "10",
 "date": "2019/11/01"
 },
 {
 "value": "10",
 "date": "2019/12/01"
 },
 {
 "value": "99",
 "date": "2020/01/01"
 },
 {
 "value": "41",
 "date": "2020/02/01"

 },
 {
 "value": "0.0023",
 "date": "2020/03/01"
 },
 {
 "value": "66.0012",
 "date": "2020/04/01"
 }
]
When providing series points, you need to provide the date (in ISO format YYYY/MM/DD) and the
value as a number.

To update existing point data, you can use PUT and provide an array of “Date, Value pairs” for
example to update points in the example, if will PUT to v1/import/series/MMM01/points with request
message body containing the points to update.

[
 {
 "value": "10",
 "date": "2019/09/01"
 },
 {
 "value": "10",
 "date": "2019/10/01"
 } ,
 {
 "value": "10",
 "date": "2019/11/01"
 },
 {
 "value": "10",
 "date": "2019/12/01"
 },
 {
 "value": "99",
 "date": "2020/01/01"
 },
 {
 "value": "41",
 "date": "2020/02/01"
 },
 {
 "value": "0.0023",
 "date": "2020/03/01"
 },
 {
 "value": "66.0012",
 "date": "2020/04/01"
 }

]

The response in this case will indicate partial success 207, this is due to the data being outside of the
exiting date range. To update data it needs to exist, however the API will apply the data update to the
valid range and ignore the data outside of the existing data range. The response will reflect this and
indicate how many successful changes were applied and failure count. The statusInfo will also keep
you informed.

Response indicating partial success and overlap.

 {
 "code": 207,
 "message": {
 "success": 5,
 "failure": 3,
 "total": 8,
 "details": [
 {
 "code": "MMM01",
 "statusInfo": [
 {
 "code": 17,
 "message": "Update successfully. Dates out of existing range are ignored",
 "path": [
 "Date"
]
 }
]
 }
]
 },
 "data": null,
 "links": [
 {
 "href": "http://(base url}/v1/import/series",
 "rel": "getall-series",
 "method": "GET"

Now you have seen how to create a series with points, add new points and update existing points, the
other useful methods:

Review your series using GET at the series collection level using a filter

GET: {{baseUrl}}/v1/import/series?filter=MMM01

Review your series using GET at the series/{code} level

GET: {{baseUrl}}/v1/import/series/MMM01

Check the date ranges that your series covers

GET: {{baseUrl}}/v1/import/series/MMM01/pointsrange

Which will return the result in the familiar format, providing the startDate and endDate that
your points data ranges over.

{
 "code": 200,
 "message": {
 "success": 1,
 "failure": 0,
 "total": 1,
 "details": [
 {
 "code": "MMM01",
 "statusInfo": [
 {
 "code": 12,
 "message": "OK",
 "path": null
 }
]
 }
]
 },
 "data": {
 "points": {
 "startDate": "2019/01/01",
 "endDate": "2019/08/01"
 }
 },
 "links": [
 {
 "href": "http:// {base}/v1/import/series",
 "rel": "getall-series",
 "method": "GET"
 },
 {
 "href": "http://{base}/v1/import/series",
 "rel": "bulkupload-series",
 "method": "POST"
 }, …..

The additional links provided let you know what other actions and URL to support them.

This completes the series creations and life cycle example walk through.

Cost Models Walk Through

The creation of cost models requires two key elements, cost model metadata and components
(Raw Materials, Packaging, etc) that the model is composed from. Metadata describes the key
attributes, models must have a unique code and a name, unit, currency and frequency defined.
It is a good idea to familiarise yourself with the cost model UI in Mintec Analytics. Let’s get
started, to create a new code model you will define the core information and POST the data in
the body of the message to https://public-api.mintecanalytics.com/v1/import/costmodels

[
{
 "code": "NEWCORN01",
 "name": "Pop Corn V2 Issue 01",
 "specification": "Made from more real corn created just now",
 "currency": "EUR",
 "unit": "kg",
 "frequency": 2,
 "gtin": "2218400000",
 "countryCode": "FR",
 "modelCategory": "Dairy",
 "region": "Europe"
}
]

The body of the message is a JSON payload, so the Content-Type request header should be
set to application/json. To utilise Mintec supported currency, frequency and unit in the API,
the ”Abbr” abbreviation field is used for currency and unit representation and id or name for
frequency. See currencies, frequencies and units below for details.

If the model was successfully created, you will get a 201 response code, the body of the result
will return a JSON payload providing additional details. See below:

{
 "code": 201,
 "message": {
 "success": 1,
 "failure": 0,
 "total": 1,
 "details": [
 {
 "code": "NEWCORN01",
 "statusInfo": [
 {
 "code": 12,
 "message": "OK",
 "path": null
 }
]
 }
]
 },
 "data": null,

https://public-api.mintecanalytics.com/v1/import/costmodels

 "links": []
}

You have defined the metadata for the model, it does not have any components. The model
will not display in the Mintec Analytics Application, until it has components defined.

To add components to the model, you will need to initially create them using POST, supply a
message body detailing which section to place them (Raw Ingredients, Packaging, ..), what
percentage or weight to use, the Mintec series code if using a Mintec Series and a name for
the ingredient you are adding.

Add some ingredient to the Raw Materials section of the model, you will need to POST the
body of the message to https://public-api.mintecanalytics.com
/v1/import/costmodels/model/NEWCORN01/components

This path represents the path to the model reference by its code that was created in the
initial step and addresses the components.

[
 {

 "compSection": 1,
 "type": 2,
 "useWeight": false,
 "series": [
 {
 "name": "Wheat",
 "code": "QI19",
 "type": "mintec",
 "percentage" : 35
 },
 {
 "name": "Butter",
 "code": "J134",
 "type": "mintec",
 "percentage" : 35
 }
]
 }
]

Let’s break down the request.

The “compSection” defines where we want to place these new elements in the model the 1 =
Raw Materials and other sections follow the same order, so 2 = Packaging and so on.

Type represents how you want to define the items, these are:

• 1 = Simple – A value

• 2 = Advanced – Use a Series

• 3 = Formula – Use a formula

In the example “type” 2 (Advanced) is using a series

“useWeight” false tells the API to expect the series to contain percentage value to determine
their contribution to the overall model.

The series are defined as an array, each series is defined by code and a name. the type within
the series block indicates that the series code is for a Mintec series.

 "series": [
 {
 "name": "Wheat",
 "code": "QI19",
 "type": "mintec",
 "percentage": 35
 },
 {
 "name": "Butter",
 "code": "J134",
 "type": "mintec",
 "percentage": 35
 }
]

You can use other types of series, specify scope of the series, the platform will resolve the
code looking for a series that matches. Please note the series must exist before you reference
it in a model.

• mintec

• customised

• imported

• costmodel

• shared

Note: It is also possible to create the cost model and components in a single request, to do
this the components array can add to the request payload. Below is a full example that
combines the data supplied into a single step:

Create Model with Components:

[
{

 "code": "NEWCORN01",
 "name": "Pop Corn V2 Issue 01",

 "specification": "Made from more real corn created just now",
 "currency": "EUR",
 "unit": "kg",
 "frequency": 2,
 "gtin": "2218400000",
 "countryCode": "FR",
 "modelCategory": "Dairy",
 "region": "Europe",
 "components":
 [
 {
 "compSection": 1,
 "type": 2,
 "useWeight": false,
 "series": [
 {
 "name": "Wheat",
 "code": "QI19",
 "type": "mintec",
 "percentage" : 35
 },
 {
 "name": "Butter",
 "code": "J134",
 "type": "mintec",
 "percentage" : 35
 }
]
 }

]
 }
]

Note: Once a model and components have been created you can update the metadata
properties and components by using PUT. You can verify the current state of a model using
GET, either at a collection level using https://public-api.mintecanalytics.com
/v1/import/costmodels or at a model level using the code in the path:

https://public-api.mintecanalytics.com /v1/import/costmodels/model/NEWCORN01

To navigate to a cost models component with path for the model + code and components for
example:

https://public-api.mintecanalytics.com
/v1/import/costmodels/model/NEWCORN01/components

To complete the walkthrough, you can update the cost models components, with a list that
spans a few more sections and types. If your subscription does not have access to all the
categories, substitute the series codes.

POST/v1/import/costmodels would also allow you to create cost model with components and
meta data together.

Using PUT, the message body with the following payload will replace the list of components
for the model.

PUT: https://public-
api.mintecanalytics.com/v1/import/costmodels/model/NEWCORN01/components

[
{
 "compSection": 2,
 "type": 2,
 "useWeight": false,
 "series": [
 {
 "name": "Packaging Liner",
 "code": "EX29",
 "type": "mintec",
 "percentage" : 0.56
 },
 {
 "name": "Film Covering",
 "code": "PI35",
 "type": "mintec",
 "percentage" : 2
 }
]
 } ,
 {
 "compSection": 1,
 "type": 2,
 "useWeight": false,
 "series": [
 {
 "name": "Wheat",
 "code": "QI19",
 "type": "mintec",
 "percentage" : 35
 },
 {
 "name": "Butter",
 "code": "J134",
 "type": "mintec",
 "percentage" : 35
 }
 ,

https://public-api.mintecanalytics.com/v1/import/costmodels/model/NEWCORN01/components
https://public-api.mintecanalytics.com/v1/import/costmodels/model/NEWCORN01/components

 {
 "name": "Oil",
 "code": "SFOR",
 "type": "mintec",
 "percentage" : 2
 }
]
 },
 {

 "compSection": 3,
 "type": 3,
 "formula": "(@XI05 * 0.05) + 9.3"
 }
]

This conclude the cost model walkthrough.

Cost Model Fields Reference

The following indicates the mandatory and optional fields for a cost model, metadata definition.

Parameter Data Type Required
/Optional

Description

code String Required Cost model code.
Alphanumeric. Max length: 50 characters.

name String Required Cost model name.
Max length: 50 characters.

specification String Optional Specification.

currency String Required Currency.
Value list: Refer to list of currencies

unit String Required Unit
Value list: Refer to list of units

frequency Enum Required Frequency.
Value list: 2 - 6
Note: The String value can also be used in place of the enum

2 = Daily
3 = Weekly
4 = Monthly
5 = Quarterly
6 = Annually
You can use number or name in frequency
parameter E.g. “2” or “Daily

GTIN String Optional Alphanumeric 30 chars. GTIN (Global Trade Item
Number)

countryCode String Optional countryCode must be provided, for example: DE,
FR, GB, etc.

systemRefKey String Optional Alphanumeric 20 chars (future)

modelCategory String Optional Alphanumeric 30 chars.

region String Optional Alphanumeric 30 chars.

businessUnit String Optional Alphanumeric 30 chars. (future)

* future – The data may not be persisted, and the UI will not yet support the field.

Cost Model Components Fields reference

Components Fields

Parameter Data Type Required
/Optional

Description

code String Required Cost model code.
Alphanumeric. Max length: 50 characters.

components Array of
objects

Required At least one component is required.

compSection

Enum Required Code of Component.
Value:
1 = Raw materials
2 = Packaging
3 = Transport
4 = Energy
5 = Labour
6 = Duty/Tariff
7 = Other Cost

type Enum Required Type of Component.
Value:
1 = Simple
2 = Advanced
3 = Formula builder

useWeight Boolean Determine whether portion of series to the
component is to be specified by weight or
percentage.
Required if ComponentType = 2 AND
(ComponentCode = 1 OR 2).
Value: True/False.
If UseWeight is True, series must supply a weight
field. Otherwise, series must supply a percentage
field and value.

percentage Number Component percentage.
Applicable if ComponentType = 1.
Positive number =<100.
If IsPercentage is True, Percentage is required.
Otherwise, set Percentage as Null.

costValue Number Component value.
Applicable if ComponentType = 1.
Positive number.
If IsPercentage is False, CostValue is required.
Otherwise, set CostValue as Null.

series Array of
object

name String User’s defined name. Max length: 50 chars.
Required if ComponentType = 2.

code String Series code. Max length: 50 chars.
Required if ComponentType = 2.

Alphanumeric. Max length: 50 chars.

type String Values: mintec, customised, imported, costmodel,
shared.
Used to match specified series with existing series in
MA.

weight Number Series weight.
Applicable if ComponentType = 2 AND
(ComponentCode = 1 OR 2).
Must be a positive number.
If Useweight is True, SeriesWeight is required.
Otherwise, set SeriesWeight as Null.

percentage Number Series weight.
Applicable if ComponentType = 2 AND
(ComponentCode = 1 OR 2).
Must be a positive number =<100.
If Useweight is False, SeriesPercentage is required.
Otherwise, set SeriesPercentage as Null.

factor Number Series factor.
Required if ComponentType = 2 AND
(ComponentCode = 3 OR 4 OR 5 OR 6 OR 7).
Max length: 15 chars.

formula String Formula builder.
Required if ComponentType = 3.

Method Details

GET Https://public-api.mintecanalytics.com/v1/import/series

Returns list all available user series in Mintec Analytics

Return type
JSON response

Path parameters
N/A

Query parameters
Filter by Code/Name/Description (optional)

Query Parameter — filter Enter some text e.g. Coffee to search for all series which contains that text
in series Code or Name or Description. If not supplied, then no filter will be applied.

To change the number of items per page use pagesize
To page trough the results use pageindex (zero based)

For example: /v1/import/series?filter=CoDe2&pageSize=2&pageindex=2

Example data for response

{

 "code": 200,
 "message": {
 "success": 6,
 "failure": 0,
 "total": 6,
 "details": [
 {
 "code": null,
 "statusInfo": [
 {
 "code": 12,
 "message": "OK",
 "path": null
 }
]
 }
]
 },
 "data": {
 "items": [
 {
 "code": "Tuna",
 "name": "Tuna",
 "specification": null,
 "currency": "US Dollar",
 "unit": "Kilogram",
 "frequency": “Daily”,
 "points": [
 {
 "date": "2017/09/15",
 "value": 1234
 },
 {
 "date": "2017/09/18",
 "value": 1234
 },
 {
 "date": "2017/09/19",
 "value": 1234
 },
 {
 "date": "2017/09/20",
 "value": 1234
 },
 {
 "date": "2017/09/21",
 "value": 1234
 },
Content-Type: application/json

Responses

200
OK

Refer to Error Codes section more details

GET Https://public-api.mintecanalytics.com/v1/import/series/{code}

Returns metadata and data points for a single user series. Get individual series code based on the
provided Code.

Path parameters
code (required)
Path Parameter — Series code of the series to retrieve. Should form part of the URL

Return type
JSON response

Example data for response

 {
 "code": "MySalmon",
 "name": "Salmon Norway",
 "specification": null,
 "currency": "Norway",
 "unit": "Kilogram",
 "frequency": 2,
 "points": [
 {
 "date": "2017/09/15",
 "value": 1234
 },
 {
 "date": "2017/09/18",
 "value": 1234
 },
 {
 "date": "2017/09/19",
 "value": 1234
 },
 {
 "date": "2017/09/20",
 "value": 1234
 },
 {
 "date": "2017/09/21",
 "value": 1234
 },
 {
 "date": "2017/09/22",
 "value": 1234

https://public-api.mintecanalytics.com/v1/import/series/%7bcode%7d

 },
Content-Type: application/json

Responses
200
OK

Use GET/v1/import/series/{code}/pointsrange to return the date range of the points available for
specific series.

{

 "code": 200,

 "message": {

 "success": 1,

 "failure": 0,

 "total": 1,

 "details": [

 {

 "code": "Salmon Norway",

 "statusInfo": [

 {

 "code": 12,

 "message": "OK",

 "path": null

 }

]

 }

]

 },

 "data": {

 "points": {

 "startDate": "2017/09/15",

 "endDate": "2017/12/15"

 }

 },

Refer to Error Codes section more details

POST Https://public-api.mintecanalytics.com/v1/import/series

Create new user series into Mintec Analytics. This end point will also allow you insert series in bulk.

Use below end point of you need to create specific series POST Https://public-
api.mintecanalytics.com/v1/import/series/{code}

Return type
JSON response

Path parameters
N/A

Query parameters
N/A

Example data

https://public-api.mintecanalytics.com/v1/import/series/
https://public-api.mintecanalytics.com/v1/import/series/%7bcode%7d
https://public-api.mintecanalytics.com/v1/import/series/%7bcode%7d

Content-Type: application/json

Date Format is: YYYY/MM/DD.

Responses
201
OK

Refer to Error Codes section more details

POST Https://public-api.mintecanalytics.com/v1/import/series/{code}/points

Add series points to the series {code}, where {code} is the user imported series.

Path parameters
code (required)
Path parameter – code of the series to import into Mintec Analytics.

Query parameters
code (required)
Query Parameter — Code of the series to import

Example data

Content-Type: application/json

Responses
201
OK

Refer to Error Codes section more details

https://public-api.mintecanalytics.com/v1/import/series/%7bcode%7d/points

PUT Https://public-api.mintecanalytics.com/v1/import/series/{code}

This end point could be used to modify user series or to update the imported series

Path parameters
code (required)
Path parameter – code of the series to import into Mintec Analytics.

Query parameters
code (required)
Query Parameter — Code of the series to import

Example data

{
 "code": "wheatdata",
 "name": "mywheatsupplierdata",
 "specification": "wheatmilling",
 "currency": "1",
 "unit": "21",
 "frequency": 2,
 "points": [
 {
 "date": "2020/01/01",
 "value": 150
 }
]
}
Content-Type: application/json

Responses
200
OK

Refer to Error Codes section more details

PUT Https://public-api.mintecanalytics.com/v1/import/series/{code}/points

This end point could be used to update the data points for specific series code. This will allow to
add/modify data points in history or to continue line in Mintec Analytics.

Path parameters
code (required)
Path parameter – code of the series to modify or update .

Query parameters
code (required)
Query Parameter — Code of the series to modify or update

Example data

https://public-api.mintecanalytics.com/v1/import/series/%7bcode%7d
https://public-api.mintecanalytics.com/v1/import/series/%7bcode%7d/points

[
 {
 "date": "2020/10/03"

 "value": 100
 }
 {
 "date": "2020/10/04"

 "value": 200
 }

]
Content-Type: application/json

Responses
200
OK

Refer to Error Codes section more details

GET https://public-api.mintecanalytics.com/v1/import /series/{code}/pointsrange

Returns the data range as dates start – end

Path parameters
code (required)
Path parameter – code of the series to manage points data

Query parameters
N/A

Example data for response
[
{
 "code": 200,
 "message": {
 "success": 1,
 "failure": 0,
 "total": 1,
 "details": [
 {
 "code": "MMM01",
 "statusInfo": [
 {
 "code": 12,
 "message": "OK",
 "path": null
 }
]
 }

https://public-api.mintecanalytics.com/v1/import

]
 },
 "data": {
 "points": {
 "startDate": "2019/01/01",
 "endDate": "2019/08/01"
 }
 },
]
Content-Type: application/json

Responses
200
OK

Refer to Error Codes section more details

DELETE Https://public-api.mintecanalytics.com/v1/import/series/{code}

Removes the specific user series and the points data

Path parameters
code (required)
Path parameter – code of the series to delete from Mintec Analytics.

Query parameters
code (required)
Query Parameter — Code of the series to delete

Example data

{

 "code": 200,

 "message": {

 "success": 1,

 "failure": 0,

 "total": 1,

 "details": [

 {

 "code": "Salmondata",

 "statusInfo": [

 {

 "code": 19,

 "message": "Delete successfully.",

https://public-api.mintecanalytics.com/v1/import/series/%7bcode%7d/

 "path": null

 }

]

 }

]

 },

 "data": null,

 "links": []

}

Content-Type: application/json

Responses
200
OK

Refer to Error Codes section more details

DELETE Https://public-api.mintecanalytics.com/v1/import/series/{code}/points

Delete user series and removes all points data
Path parameters
code (required)
Path parameter – code of the series to delete

Query parameters
code (required)
Query Parameter — Code of the series to delete

Example data

{

 "code": 200,

 "message": {

 "success": 262,

 "failure": 0,

 "total": 262,

 "details": [

 {

 "code": "Salmondata",

 "statusInfo": [

 {

 "code": 19,

 "message": "Delete successfully.",

 "path": null

 }

https://public-api.mintecanalytics.com/v1/import/series/%7bcode%7d/points

]

 }

]

 },

 "data": null,

 "links": []

}

Content-Type: application/json

Responses
200
OK

Refer to Error Codes section more details

Import Cost models –

GET Https://public-api.mintecanalytics.com/v1/import/costmodels

Get list of existing cost models in Mintec Analytics system

Path parameters
N/A

Query parameters
Filter by Code (optional)

Query Parameter — {filter} Enter some text e.g. MilkChocolate to search for all model which contains
that text in model Code. If not supplied, then no filter will be applied.

Example data for response

https://public-api.mintecanalytics.com/v1/import/costmodels

Content-Type: application/json

Responses
200
OK

Refer to Error Codes section more details

GET Https://public-api.mintecanalytics.com/v1/import/costmodels/model/{code}

Return specific model in Mintec Analytics

Path parameters
code (required)
Path parameter – code of the model available in Mintec Analytics.

Query parameters
code (required)
Query Parameter — Code of the series available in Mintec Analytics.

Example data for response

https://public-api.mintecanalytics.com/v1/import/costmodels/model/%7bcode%7d

Content-Type: application/json

Responses
200
OK

Refer to Error Codes section more details

POST Https://public-api.mintecanalytics.com/v1/import/costmodels

Use this end point to create one or more cost models in Mintec Analytics

Path parameters
N/A

Query parameters
N/A

Example data

https://public-api.mintecanalytics.com/v1/import/costmodels

Content-Type: application/json

Responses
201
OK

Refer to Error Codes section more details

PUT Https://public-api.mintecanalytics.com/v1/import/costmodels/model/{code}

Update specific model information using PUT

Path parameters
code (required)
Path parameter – code of the model available in Mintec Analytics.

Query parameters
code (required)
Query Parameter — code of the model available in Mintec Analytics

Example data

https://public-api.mintecanalytics.com/v1/import/costmodels/model/%7bcode%7d

Content-Type: application/json

Responses
200
OK

Refer to Error Codes section more details

PUT Https://public-api.mintecanalytics.com/v1/import/costmodels/{code}/components

Update the components for cost models

Path parameters
code (required)
Path parameter – code of the model to update the components

Query parameters
N/A

Example data
[
 {

 "compSection": 1,
 "type": 2,
 "useWeight": false,
 "series": [
 {
 "name": "Wheat",
 "code": "QI19",
 "type": "mintec",
 "percentage" : 35
 },
 {

https://public-api.mintecanalytics.com/v1/import/costmodels/%7bcode%7d/components

 "name": "Butter",
 "code": "J134",
 "type": "mintec",
 "percentage" : 35
 }
]
 }
]
Content-Type: application/json

Responses
200
OK

Refer to Error Codes section more details

GET Https://public-
api.mintecanalytics.com/v1/import/costmodels/model/{code}/components

Get a list of existing components for specific cost model

Path parameters
code (required)
Path parameter – code of the model

Query parameters
N/A

Example data for response

Content-Type: application/json

Responses
200
OK

https://public-api.mintecanalytics.com/v1/import/costmodels/model/%7bcode%7d/components
https://public-api.mintecanalytics.com/v1/import/costmodels/model/%7bcode%7d/components

Refer to Error Codes section more details

DELETE Https://public-api.mintecanalytics.com/v1/import/costmodels/{code}

Delete cost model. Deleting the model will remove any components that are part of the model

Path parameters
code (required)
Path parameter – code of the model to delete

Query parameters
code (required)
Query Parameter — Code of the model to delete

Example data

{

 "code": 200,

 "message": {

 "success": 1,

 "failure": 0,

 "total": 1,

 "details": [

 {

 "code": "milkchocolate",

 "statusInfo": [

 {

 "code": 19,

 "message": "Delete successfully.",

 "path": null

 }

]

 }

]

 },

 "data": null,

 "links": []

}

Content-Type: application/json

Responses
200
OK

Refer to Error Codes section more details

DELETE Https://public-
api.mintecanalytics.com/v1/import/costmodels/model/{code}/components

https://public-api.mintecanalytics.com/v1/import/costmodels/%7bcode%7d
https://public-api.mintecanalytics.com/v1/import/costmodels/model/%7bcode%7d/components
https://public-api.mintecanalytics.com/v1/import/costmodels/model/%7bcode%7d/components

Removes the components for specific model

Return type
JSON response

Path parameters
code (required)
Path parameter – code of the model

Query parameters
code (required)
Query Parameter — Code of the model to delete model and its components

Example data

{

 "code": 200,

 "message": {

 "success": 1,

 "failure": 0,

 "total": 1,

 "details": [

 {

 "code": "milkchocolate",

 "statusInfo": [

 {

 "code": 19,

 "message": "Delete successfully.",

 "path": null

 }

]

 }

]

 },

 "data": null,

 "links": []

}

Content-Type: application/json

Responses
200
OK

Refer to Error Codes section more details

GET Https://public-api.mintecanalytics.com/v1/import/costmodel/model/{code}/rebalance

Use this to rebalance specific cost model to 100%

Return type

https://public-api.mintecanalytics.com/v1/import/costmodel/model/%7bcode%7d/rebalance

JSON response

Example data for response
{

 "code": 200,

 "message": {

 "success": 1,

 "failure": 0,

 "total": 1,

 "details": [

 {

 "code": "FP0022",

 "statusInfo": [

 {

 "code": 12,

 "message": "OK",

 "path": null

 }

]

 }

]

 },

 "data": {

 "code": "FP0022",

 "name": "Fish Pie",

 "components": [

 {

 "useWeight": true,

 "series": [

 {

 "weight": 4.68,

 "percentage": null,

 "name": "Cod",

 "code": "TS11",

 "type": "mintec"

 },

 {

 "weight": 2.34,

 "percentage": null,

 "name": "Mash",

 "code": "POBE",

 "type": "mintec"

 },

 {

 "weight": 2.34,

 "percentage": null,

 "name": "Italian Tomato",

 "code": "7S24",

 "type": "mintec"

 },

 {

 "weight": 0.38,

 "percentage": null,

 "name": "Salt L1",

 "code": "IH41",

 "type": "mintec"

 },

 {

 "weight": 8.57,

 "percentage": null,

 "name": "Cheese",

 "code": "JS22",

 "type": "mintec"

 }

],

 "code": "Rawmaterials",

 "type": 2

 },

 {

 "useWeight": false,

 "series": [

 {

 "weight": null,

 "percentage": 8.42,

 "name": "Box1",

Content-Type: application/json

Responses
200

 OK

Refer to Error Codes section more details

GET Https://public-api.mintecanalytics.com/v1/curriences

Returns a list of supported currencies. Use the short name “abbr” when defining currencies in series
or cost models. For example, “USD” for US Dollar.

Return type
JSON response
Example data for response
 {
 "content": [
 {
 "id": 1,
 "name": "US Dollar",
 "abbr": "USD"
 },
 {
 "id": 3,
 "name": "British Pound",
 "abbr": "GBP"
 },
Content-Type: application/json

Responses
200

 OK

Refer to Error Codes section more details

GET Https://public-api.mintecanalytics.com/v1/frequencies

Returns a list of supported Frequencies. Use the id or name for series or cost models, they can be
used interchangeably. For example: “Daily” to define a daily frequency or the integer 2.

https://public-api.mintecanalytics.com/v1/curriences
https://public-api.mintecanalytics.com/v1/frequencies

Return type
JSON response

Example data for response

 {
 "content": [
 {
 "id": 2,
 "name": "Daily"
 },
 {
 "id": 3,
 "name": "Weekly"
 },
Content-Type: application/json

Responses
200

 OK

Refer to Error Codes section more details

GET Https://public-api.mintecanalytics.com/v1/units

Return a list of supported units. Use the “abbr” abbreviation short name for units in series and cost
models. For example, “MT” for Metric Tonne.

Return type
JSON response

Example data for response

{
 "content": [
 {
 "id": 1,
 "name": "Metric Tonne",
 "abbr": "MT"
 },
 {
 "id": 21,
 "name": "Kilogram",
 "abbr": "kg"
 },
Content-Type: application/json

https://public-api.mintecanalytics.com/v1/units

Responses
200
OK

Error Codes

 The API returns appropriate standard response codes and statuses for every request.

Code Text Description

200 OK Success, standard response.

201 Created Standard response for a request when an item is created.

207 Multi-Status Outcome of multiple resources, an array of responses with codes indicating

the outcome of each resource request.

400 Bad Request The request was invalid or cannot be otherwise served.

401 Unauthorized Authentication credentials were missing or incorrect.

403 Forbidden The request is understood, but it has been refused or access is not allowed.

404 Not Found The URI requested is invalid or the resource requested.

429 Too Many

Requests

Returned when a request cannot be served due to the application's rate

limit having been exhausted for the resource.

500, 501,

502, etc.

Internal

Server Error

Something is broken. Please contact Mintec Support so the Mintec team

can investigate.

